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Abstract 

Many computational problems in image processing, signal processing, and scientific 
computing are naturally structured for either pipelined or parallel computation. When 
mapping such problems onto a parallel architecture it is often necessary to aggregate 
an obvious problem decomposition. Even in this context the general mapping problem 
is known to be computationally intractable, but recent advances have been made in 
identifying classes of problems and architectures for which optimal solutions can be 
found in polynomial time. Among these, the mapping of pipelined or parallel computa- 
tions onto linear array, shared memory, and host-satellite systems figures prominently. 
This paper extends that work first by showing how to improve existing serial mapping 
algorithms. Our improvements have significantly lower time and space complexities: in 
one case we reduce a published O(nm3) time algorithm for mapping m modules onto It 
processors to an  O(nm log rn) time complexity, and reduce its space requirements from 
O(nm2) to  O(m) .  We then reduce run-time complexity further with parallel mapping 
algorithms based on these improvements, that  run on the architectures for which they 
creating mappings, 

'This research was supported in part by the National Aeronautics and Space Administration under NASA 
contract NASI-18107 while the author was in residence at ICASE, Mail Stop 132C, NASA Langley Research 
Center, Hampton, V.4 23665. 
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1 Introduction 
MiLlly computational problenls in image processing, signal processing, and scientific com- 
pnting are naturally structured for either pipelined or parallel computation. It is common 
for an obvious problem decomposition to have more components, or “modules” than there 
arc processors. We must then map the computation by aggregating modules. The general 
mapping problem is known to be intractable but recently advances have been made by 
Bokhari(41 in identifying classes of problems and architectures for which optimal solutions 
cim be found in polynomial time. Among these types of computations, a set of mod- 
d c > s  configured as a chain figures prominently. Unless otherwise stated, all references to 
Bokhari’s work refer to [4]. 

As pointcd out by Bokhari, the problem of mapping module chains onto different types 
of architcctiires frequently arises in image and signal processing applications; it may also 
arise in the parallel solution of partial differential equations. The concept of “module” 
can be quite general. For example, a signal processing application may require a signal to 
Iw Fourier-transformed, massaged in the frequency domain and then inverse-transformed. 
Each stage may be viewed as a module, or a stage may be subdivided into a sequence of 
modules. In an image processing context we may find similar processing stages for every 
frame of data. A common means of numerically solving a partial differential equation 
(PDE) in parallel is to decompose the PDE domain into strips[l2]. The computation asso- 
ciated with a strip is the collection of all grid point updates required for points within the 
strip. The communication requirements between strips gives this computation a chain-like 
structure. At a given iteration, all strips may be updated in parallel, with communication 
occuring at  the itcration’s end. Grids may be irregular, giving strips different execution 
wciglits. A viable means of balancing the workload is to decompose the domain into many 
1110rc strips than tlicre are processors, and then aggregate them into equi-weighted super- 
strips. h4odules are also easily identified in a computation described by a directed acyclic 
graph (DAG) whose nodes describe computations, and whose arcs define data dependen- 
ciw. The “level” of a DAG node u is the smallest number of nodes on a path from any 
so1irc.e tiodc (no incoming arcs) to u ;  the collection of all nodes at  a given level can con- 
stitute a module. It is not immediately obvious that a chain structure between modules 
should result, since a node in module k (equivalently, at  level k) may depend on a node 
in module i c k - 1. However, we can create a chain-like communication arrangement if 
we require every module j to transmit all its results to module j + 1 and to transfer any 
results received from module j - 1 which are to be used by modules k > j. We can then 
pipcline multiple independent invocations of the DAG computation. 

Currcnt parallel architectures compel us tn at !eat  cmsider chain decom.r?esiticss. 1 Fcr 
ex;miplc, thct CMU JVarp[ 1 J is a linear array of high-powered proccssors, so that pipelining 
scqucntial Inotlulcs is a natural solution approach. It can be ad\*antageoiis to use chains 
ev~ i i  if the commiinication topology is rich. For example, tile Intc.1 iPSC (hypercube) has 
v c ~ y  high comrnunicntion startup costs which are nearly intlepenc lent of the message size. 
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Bc*tt,cr performance is sometimes seen by minimizing the number of messages, rather than 
t liv inessagc voliime [ 141. The performance-conscious programmer again is encouraged 
to liiriit thc intcrconncction structure of the problem decomposition; a chain offers the 
siniplcst of useful structures. 

Lvt M i ,  M 2 ,  ..., M ,  denote a chain of rn modules which may be executed concurrently. 
As wc havc dcscrihcd, the modules may form a pipeline of computations or may describe a 
parallel computation whose communication requirements are local. The mapping problem 
iintlcr thc contiguity constraint is to assign each M; to one of n processors in such a way 
that thc set of modulcs assigned to a processor forms a contiguous subchain of MI, .  . . , M,. 
Thc. problcm bccomes non-trivial when we allow the modules to have individual execution 
tiirics (callcd module weights), and require an explicit communication cost for mapping 
A l l  and MI+, onto different processors. A processor’s time during the computation is 
spent, eithcr excviting a module, communicating results, or waiting for results so that it 
C i l t i  continue. Uiitl(.r any mapping there will be at  least one “bottleneck“ processor who 
limits thc computational rate. We seek the mapping which minimizes the execution and 
coinmunicatioii time of the associatcd bottleneck processor. Bokhari gives polynomial- 
tiinc algorithms for optimally mapping a chain onto a linear array of processors, mapping 
i t  (*llili:1 onto a shared memory machine, and mapping a collection of chains onto a system 
consisting o f  a central host with a nuinber of attached satellite processors. 

Bokliari solvcs tlicsc problciiis with a layered graph. A graph node at  layer i describes 
o i i c ’  possible assigiiiiiciit of inodulcs to the ith processor. Layer i has a node for every 
possiblc assignment. Edges cxis t only between nodes in adjacent layers, and are always 
r o o t d  in tlic laycr with smaller index. An edge leaving a node is labeled with the cost 
o f  t h  associatml processor assignment. Edges are defined so that every path through the 
gril1)li dcscribcs a lvgal mapping, and the edges on that path can be analyzed to give the 
Iiiapping’s cost. A least-cost path algorithm is employed to find the optimal mapping. 
His algorithms map a chain onto a linear array in O(nrn3) time and space, onto a shared 
rncinory machine in O(nrn310gm)’ time and O(nm3) space, and map a set of n chains 
oritm a host with n satellites in O(nrn2 logrn) time and O(nm2) space. 

Tlic valiio of ni can be quite large for applications whose modules are fine-grained. In 
such caws an O ( n d )  algorithm is unattractive. This is especially true since the mathemat- 
icill model wc employ to assess a mapping’s cost is quite simple, and ignores architectural 
&tails which may impact tlic accuracy of the model. Accepting that a simple mathe- 
matical model of the mapping problem is still desirable, it is important then to find ways 
to rcclucc the coniplcxi ty of the approach. Iqbal[7] does so by considering approximation 
algorithms tliat find a solution guaraiitced to be within E of the truc optimal. Letting TV, 
dcnote the sum of d l  module wciglits, his method finds the miiiimal approximate solu- 
tion to the linear array problcm in O(nm log( WT/E) )  time, to the shared memory problem 
in O(m2 log( W T / F ) )  time2, arid to the host-satellite problcm in O(nni log(W~/e)) time. 

All logiirithtns in this paper arc base 2. 
21ql)al iricorrectly clairns O(m log( 1 V ~ / c ) )  for this solution. 
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These methods are attractive alternatives to Bokhari’s, provided the user can accept the 
possibility of failing to find the precise optimal solution. Another drawback is that the 
coniplexity of Iqbal’s method is sensitive to the actual values of the module weights and 
on the degree of accuracy desired. 

Bokhari’s methods and Iqbal’s methods both rely on a “probe” function which finds an 
optimal solution, subject to some constraint. The probe function is repeatedly called, vary- 
ing the the constraint, until an optimal solution is discovered. In § 3 we outline Bokhari’s 
solutions, and show how they are all easily improved by a factor of m by reducing the 
Complexity of his probe function. We then examine each problem, and show how to reduce 
the complexities of their respective probe functions, how to reduce the cost of organizing 
tlic set of probc calls, and how to achieve low expected parallel time complexities by ex- 
cciiting the mapping algorithms on the target architectures. These algorithms’ expected 
complcxitics are bascd on the assumption that all module weights are independent samples 
of  i i  common unspecified distribution, and that all communication delays are independent 
saxnplcs of a different unspecified distribution. 

In 5 4 we reduce the time complexity of Iqbal’s probe function from O(nm) to O(n  log m). 
The improvement requires only the additional assumption that communication costs are 
houndect. Then we exploit the problem’s structure and reduce the cost of organizing 
thc Iprobc search valiies from O(m2 logm) to O(m logm). The resulting algorithm has 
O( 71771 logm) time complexity and O(m) space complexity. Finally, we organize the algo- 
ritlim for exccution on the linear array itself. The parallel algorithm has an O ( m  logm logn) 
thic complcxity, arid O(nm) space complexity. 

from O( m2) to O( nt log m). Coupled with the search organization developed for the linear 
array problem, wc reduce this problem’s time complexity from Bokhari’s O(nrn3 log m) to 
O( nz2 log m). Our algorithm has O( m2) space complexity. We then parallelize our solu- 
tioii in tlircc ways. One mcthod achieves an O ( ( m 2 / n )  logm logn) time and O(nrn) space 
c*omplcxity; a second achieves an O((nz2/n)  log m) time and O(m2)  space complexity. The 
tliird is appropriate: when S n 3  < m, and has an expected O((m2/n)logrn) time and O(m)  
s p i i w  complcxi ty. 

Finally, in G wc use tlic results of 3 4 to reduce the solution time complexity from 
nokhari’s O(nnz2 log m)  to an O(rnax{nm log n, 11 log’ m } )  time complexity. Our algorithm 
has 0(nm)  spacc complexity. We then parallelize the algorithm for execution on the host- 
satcllite architecture. When m is sufficiently larger than n the parallel algorithm has an 
O(71nt) time complexity which is within a constant factor of optimal when the problem is 
loatld serially. 

The tradc-ofEi bctwezn communication costs and load balance have recently been ad- 
clrvsscd by a few researchers. Berger and Bokhari in [2] propose and analyze binary dissec- 
tion of a two-di~nciisional domain with irregular workload. The solutions they construct 
I I C Y V ~  not bc opt,imril. A similar problem for finite-element solution methods was studied 
hy Sadayappan and Ercal in [13]. Cventanovic iE [GI examines mapping, commuaication, 

In $ 5  wc reduce the timc complexity of a probe function based on Kernighan’s algorithm[$] 
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a d  grairiularity issues in an abstract setting. Foundational work for the parallel mapping 
1)rol)kiii was laid by study of tlic distributed mapping problcin. Tlic seminal works in 
this ficltl iiicliidc piipcrs by Stono [17],[1G]; by Bokhari [5 ] ,  and by Towsley [18]. Bokhari 
sliirirxiarims much of this work in [3]. 

2 Model Definitions 
WC supposc that il computational problem has been decomposed into m modules  MI, .  . . , AIrn. 
Tliosc inotlules may hc defined by function, e.g. fast fourier transform, convolution; they 
iiiay also I)(: some patition of a data domain, as in the solution of partial differential 
cqiiatioiis. \Vi: imagine that one execution of M; needs data from M;-1, M;+1, or both. We 
siipl)osc that a Iiiodule M ,  will be executed many times, each execution requiring wj > 0 
t h e  on one of a sot of n homogeneous processors; the modules are concurrent because 
c i  t h r  rcisults ax-(: 1)cing pipelined, or the modules are loosely synchronized and exchange 
t h  iiccc:ssary data at thc conclusion of cvery iteration. Our expected complexity analysis 
will ;i.ssiimo tli;i.t, c:acli to; is drawri independently from a common distribution having finite 
i i i ( w i  p,,, and sta.ii(1;i.rd deviation ow. 

We :ire int,c.rc~stcrl primarily in situations where m is large and n << m, e.g., n = 10 
aiitl 7n, = 1000. 01ic reason for this focus is that algorithms we develop are somewhat 
iiiorc complcx thin cxisting ones; for small m the existing algorithms are likcly to be fast 
moiigli for practical use; convorscly, for large m they are impractical. A second reason 
is that using t h  pnrallel processors to compute the mapping of another computation 

large eiiougli to owrcome that overhead. 
I itrq)oscs iul<litioniil overhead, and becomes an attractive option only if the problem size is 

a.iicl/or A f , + l .  If onc. of these modules (say Mi-1) is assigned to the same processor as Mi, 
At tlic ond of Mi’s execution period there is data available for consumption by Mi-l 

wc assiixnc t1ia.t tlic iiext iiivocation of can access that data without additional cost. 
If o i w  of tlicw: rnotliilcs (say M i + ,  ) is assigned to a different processor, then Mi’s processor 
i i i i ist ,  c.xI)lici tly s c m 1  data over a communication channel, and we will say that the logical 
li i tk l)ct,wccm A4; and The cost of that communication is assumed to 
c l c * p m c l  on talle coirimunicating modulcs. Exposing the link between A, f ;  and Mi+1 causes 
1 ) o t h  iiiodiilos to  iiiciir a delay cost Ci 2 0 which models all over1iea.d a processor suffers in 
sc,iitliiig n . 1 ~ 1  rcxxiviiig mcssagcs over that link. We. make the reasonable a.ssumption that 
C‘; < C for so111c coiistniit, C which is intfepentlcnt of m. Our expccted complexity analysis 
assiiiriw that (:ii(:li C.‘i is drawn iiidepcndently from a common clistribution having finite 
iii(’a.ii ant1 st;iii(I;i,rd deviation 0,. 

\I‘c lot, Si, = E’,=; i i ~ k  tlcriotc t l ic  slim of module weights or1 the subcliain delimited by 
A I ;  aiitl  AI,. Sij is ii  singlc prowssor’s module e v a l m t i o n  t i m e  cost of being assigned the 

ii.rc*lii t,cc tiiro coiisid(md, a.s showxi below. 

I 

is ezyosed. 

I siii)(-liaixi. Tlic iiicoq)orat,ion of tlic associated delal costs Ci-l aiid Cj will depend on the 
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Lincar Array: Consider a linear array of processors PI, P,, . . . , P,,; processor P, has a 
rlircc-t colnriiunication link with only processors PI-l and Pi+*. We assume that a processor 
is not frce to procced with computation if it is actively engaged in conimunication. If 
riiodulcs M, through hij are assigned to processor Pk, then Pk’s ezecvt ion t i m e  during one 
iteration is C,-1 + S,, + C,. The cost of a complete mapping is the maximum processor 
c-xccution time among all processors; we have called the processor defining this maximum 
the bottleneck processor. If the system we map is a pipeline, then the bottleneck processor 
limits thc rate of results, and the mapping cost is the time required to obtain one result 
from a full pipeline. If the systcm is parallel rather than pipelined the mapping cost is the 
t i i i i c  rc-qiiird by cwli iteration. In either case we optimize performance by minimizing the 
iiiii1)pirig cost. 

Shared Memory Machine: Considcr a collection of identical proccssors that commu- 
nicate tlircmgh a shared memory. The communication medium is a shared resource, so 
tliat it is npl)ropriate to model communication overhead by adding the costs of all exposed 
links. The cost of a mapping is the maximum of (i) the sum of all coniinuiiication costs 
0x1 c.xposcc1 links, and (ii) the maximum processor module evaluation costs under the as- 
signment. This nioclcl presumes that communication can be overlapped with computation, 
I)iit, that thc commilnication mcdium serializes the communication traffic. 

Host-Satell i te Machine: Consider a powerful host machine which has n satellite pro- 
ctssors. This arrangement might be appropriate when there are n sensors with attached 
niicro-processors. There is a chain-like piyelined computation associated with each satel- 
lite. Without loss of generality we assume that the chain for satellite P, has m modules, 
M,, , .. . , AIIm. Satcllite Pi can unload some subchain M,j through MI,,, onto the host at  
t h c :  cost of an inter-module communication Ci, which is suffered by both host and satellite 
(1wq)irig the w l d c  sul>cliain on the Satellite gives a communication cost C ‘ I ~ m + ~ ~ ) .  Unload- 
ing work onto thcx host also has the effect of increasing the host’s computational load. The 
1io.st’s cost of il ni;tI)ping is the slim of (i )  any load it must always pcrforiii, e.g. combina- 
tiori of fully processed sensor data, (ii) the sum of module execution times of all satellite 
iricdiiles it has rcccived, and (iii) the communication costs associated with each satellite. 
A satellite’s execution time is its module evaluation costs plus its host communication cost. 
A n  assigiimcnt’s cost is the maxinitim of host cost and maximal satellite execution cost. 

Tlw following scc tion sketches Bokhari’s approach to solving these mapping problems, 
i i I i ( l  points oiit an (msy improvement to his algorithms. 

3 Layered Graph Path Algorithms 
Doklitlri solves thc linear array problem by finding the minimum path through a specially 
crc.i\t,ocl lily(3rctl graph. The graph has a source node < s > and a sink node < t >. Each 
1ayc.r corresponds to a processor. Layer i contains a node for every legal means of assigning 
iiiodiilcs to procc’ssor i. For example, node < j ,  12 :> at layer i lepresents the assignment 

5 



---- <2,2> <2,3> ----- <3,3> <3,4> <3,5> --- 
\A\ 

--e- <3,8> ---- <4,6> <4,7> <4,8> <5,5> --- 

---- <4,9> <5,9> <6,9> <7,9> <8:9> <9,9> 

Figure 1: Layered Graph for Linear Array Problem, 9 modules, 4 processors 

of modules M, through h!fk to processor i. Each layer contains O(rn2) nodes. An edge is 
dirccted from node < j ,  k > in layer i to any node of the form < IC + 1,1 > in layer i + 1. 
< s > directs an edge to every node at layer 1, and every node in layer n directs an edge to 
< t >. Consequently, any path from < s > to < t > corresponds to an assignment which 
satisfics the contiguity constraint. Figure 1 illustrates Bokhari’s own example; while an 
assignnicnt path is sliown, many edges are not shown in order to relieve visual congestion. 
Tlic laycrcd graph assumes that every processor receives at  least one module. 

An cdgc: out of node < j ,  k > at layer i is labeled with the value C,-I + s , k  + ck. 

It, is possible to include a dependence on i here to model heterogeneous processors and 
c.ommunic;itioxi links; for simplicity we assume homogeneity. The cost of a path is the 
valuc of the maxiIiially weighted edge on the path, which clearly is the time required by 
thc: bottlencck processor to solve its portion of the problem. A standard least-cost path 
algorithm finds the optimal mapping in O ( g m p h  e d g e s )  time, in this case O(nrn3). 

Least-cost paths through layered graphs are also at the hmrt of Bokhari’s shared- 
mcmory and host-satellite problem solutions. Here he develops a general technique of 
analyzing Sum-13otlleneck graphs. An edge e on such a graph has a s v m - w e i g h t  and a 
hott lencck-weight .  The cost of a given path throiigh the graph is the maximum of (i) 
tlic sum of all sum-weights on the path’s edges, and (ii) the masimum bottleneck-weight 
among thc path’s cdges. The path with minimal cost is found by first identifying all 
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. uriiyuc bottleneck-weight values, and by sorting them. Then a binary scarcli on the list 
of bottleneck-weight values is performed-for each bottleneck-weight value b visited, a 
shortest path routine TESTPATH(b) is called. TESTPATH(6) treats any edge whose 
bottleneck-weight value is greater than b as non-existent. If there is a path from source to 
sink on this edge-reduced graph, then TESTPATH( b)  returns the path whose sum of sum- 
weights is minimal. If there is no path between source and sink TESTPATH(b) returns 
the null path whose cost is defined to be 00. Defining S(b) to be the length of the path 
returned by TESTPATH(b), the binary search seeks the smallest bottleneck value & such 
that & 2 S(b). The optimal sum-bottleneck solution is then either & or S(&), where & is the 
greatest bottleneck value less than 8. For each of the layered graphs considered a call to 
TESTPATH( b )  has complexity O( graph edges).  

The sum-bot tlexieck graph for the shared-memory problem is topologically equivalent 
to that for the linear array problem. An edge directed out of node < j ,  k > is labeled 
with bottleneck-weight s j k  and sum-weight c k .  Each call to TESTPATH has complexity 
O(nm3); the algorithm’s O(nm3 logm) complexity follows from the observation that there 
are O(m2)  unique bottleneck values, and hence O(1ogm) calls to TESTPATH. 

The sum-bottleneck graph for the host-satellite problem again associates a layer with 
a processor. Node < j > at layer i represents the mapping of satellite P;’s first j modules 
onto the satellite, with the remaining modules being mapped onto the host. A node at  
layer i directs an edge to every node at layer i + 1. An example of this graph is shown in 
figure 2. The bottleneck weight on an edge directed out of node < j > in layer i is the sum 
of weights of modules Mi1 through Mij, plus the communication cost Cij. The sum weight 
on that edge is the sum of M ; ( j + l )  through M;, weights with the communication cost C i j .  

To account for an initial host load H ,  every edge directed out of the source node has a 
sum weight of H and a bottleneck weight of zero. Each call to TESTPATH has O(nm2) 
time complexity. There are possibly nrn unique bottleneck values, giving a O(nm2 logm) 
overall complexity. 

The least-cost path algorithm underlying these solutions exploits the fact that the graph 
is layered-for node o at layer i, the least-cost path from the source to o ,  through node u 
at layer i - 1 must include the least-cost path from the source to u. In fact, this is just a 
statement of the principle of optirnality. The algorithm finds the least-cost paths from the 
source to all nodes at layer i - 1 before computing any least-cost path to a node at layer 
i. The least-cost path to TJ is found by examining every u which directs an edge to TJ and 
then extending the least-cost path to u with the u + v edge. The least-cost extension is 
the least-cost path to v. As we have previously stated, the complexity of this approach 
is proportional to the number of graph edges. A simple trick will reduce the number of 
graph edges withoiit affecting path costs. For the linear array and shared memory problem 
graphs we add n - 2 layers, one between each of the previous layers (except between layers 
1 and 2 where an additional layer provides no benefit). Each new layer has rn nodes, 
labeled 1 through m. To avoid confusion we will refer to the “ith” layer in the new graph 
as being identical to the ith layer in the original graph. Node < j, k > in layer i directs a 
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<1> <2> <3> <4> 

<1> <2> <3> <4> 

<1> <2> <3> <4> 

<1> <2> <3> <4> 

Figure 2: Layered Graph for the Host-Satellite Problem 

sixiglc edge to node < k > in the new layer between layers i and i + 1; this edge is labeled 
fwwtly as bchforc. Node < k > in the new layer in turn directs an edge to every node of 
tlic form < k + 1, l  > in layer i + 1; every such edge is labeled with weight zero. Figure 3 
i1liwtratc.s tlic new graph. Again, many nodes and edges are not shown in order to avoid 
congc*st,ion. It is clcar that any path froin source to sink still defines a legal assignment and 
1i;is I I  wcight idcritical to that of the corresponding path in the original graph. The number 
of dges  drops from O(nm3) to O(nm2) ,  reducing the complexity of both the linear array 
il11(1 s h a r d  xncmory problems by a factor of m. 

We trcat, the host-satellite assignment graph similarly. Between layers we interpose a 
sixiglv node. Every node at  layer i directs a single edge to the node between layers i and 
i + 1; tlic: ctlge is wcighted as before. The node between layers i and i + 1 directs an edge 
to  cvcry ~iocle ill lilycr i + 1. Thc two weights on each such edge are zero. Once again, 
t:very path identifics an assignment and its cost; by reducing the number of graph edges 
by ;in order of nz wc reduce the algorithm’s cost by an order of m. This same trick can be 
alqAicd t,o the algorithms in [5] and  IS]^. 

Bokliari docs not discuss parnllclizstion of his methods on the target architectures. 
Evcri after irnprovcnicmt, his linear array solution is very ill-sui ted for parallelization on 
t h  array. A Iiatiir;il approach is to partition the solution graph, and require every proces- 

:’i’ricitc coinmuiiicat ion from Shallid nokliari 
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<S> 

> Processor 1 

<2,2> <2,3> <2,4> ---- <3,3> <3,4> --- Processor 2 

/ / /  I \ \  
c4,9> <5,9> <6,9> c7,9> <8,9> <9,9> Processor 4 

<t> 

Figure 3: Improved Layered Graph for Linear Array Problem, 9 modules, 4 processors 

sor to compute the least cost path to the nodes it is assigned. The computation proceeds 
in stages-find the least-cost paths to layer 2 nodes, then layer 3 nodes, etc. It is not 
difficult to see however that the communication requirements of this approach are enor- 
mous: there is communication across at least one link for every graph edge cut by the 
partition. Furthermore, if the nodes are distributed evenly among processors, then O(rn2) 
vidllcs will have to be broadcast between each of n - 1 steps. The communication complex- 
ity alone is cqiiivalciit to the complexity of a serial solution. The method just described 
might work well on a shared memory machine, provided that the number of processors is 
sninll, arid that the communication network is fast relative to the processor speeds. The 
cost, model assumcs serialized communication, so again we have an O( nm2) communication 
complexity. These observations also apply to a host-satellite system if the satellites in a 
host-satellite system can communicate through the host’s memory. 

If we 1ia.ve a computation which is decomposed into a very large number of modules, 
am1 if we tlcsire to take advantage of the parallel hardware our mapping methods tar- 
get, then hkhzri ’s  incthobs kave room f ~ r  improvement. In the fd!owir;g szctiom we 
clisciiss improvctl serial algorithms, and give parallel mapping algorithms based on these 
iml)rovcmicnt,s. 
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4 Linear Array Problem 
Bokliitri’s niethocl for solving the linear array problem does not rely on a probe in the 
sil,lrl<’ way that his shared-memory and host-satellite solutions do. Our approach is based 
on Iqlal’s[ 71, who developed a probing approach for finding an approximate solution. 
Like Bokliari’s sum-bottleneck method we will probe the space of bottleneck values. Our 
improvements stem from increasing the efficiency of the probe method, and from exploiting 
the problem structure to avoid the cost of sorting all bottleneck values. The subsections 
to follow discuss these improvements, show how to parallelize the algorithm for execution 
on the linear array. 

4.1 An Improved Probe Function 
Our xnc.thod is lmed on Iqbal’s probe function PROBEl(w), which is shown in fig- 
ure 4. PROBEl(2o) determines whether it is possible to assign the workload so that 
wcry processor's execution time is less than or equal to the bottleneck constraint t u .  
PROBEl(u7) iteratively chooses a feasible subchain load for the “next” processor. Given 
that a processor’s subchain begins with module M,, PROBEl(w) finds that j such that 
(i) SI,, = Ct-l + S,, + C, 5 w, and (ii) the remaining unassigned load A, = C, + S(,+1), 
is xiiixiiiniml. Iqbal provcs that this rule will find an assignment whose cost is no greater 
than I D ,  if one cxists. 

1x1 the worst case, for every processor assignment PROBEl(w) will consider making 
xiioclulc M,  ( j  > 71) a subchain right endpoint. PROBEl(w) always considers making M, 
itxi endpoint on every iteration where M,  is still unassigned. This gives PROBEl(w) an 
O( 71nt) complexity. 

Consider the problem faced by the inner loop of PROBEl(w): among all j E [i,m] 
siicli that $1,) 5 w, find the j,in minimizing A,. PROBE1 examines the entire interval 
[ r ,  n/,] for this point; instead we appeal to the problem’s structure and quickly find a small 
siiliiitcrval [kmi,,, ICmax] which must contain jdn. 

Define the fiiiictioxis A;’ = Si, + C,, and w ( i )  = w - C,-] + Sl(,-l) and note that 

or t q i i i  vitlcii t ly, 
R,, 5 UJ A;’ 5 w(i). 

If wv can fiiid tlic largest j such that A;’ 5 w( i) we will have fouiid the largest j such that 
R,, 5 20. Let IC,, denote this upper bound. IC,, can be quickly found with a pre-computed 
array right-min, whose j t h  entry equals IC if the mixiimum value of A-’ over [ j , rn]  occurs 
a t  position k. right-min is computed once in O ( m )  time, and is thereafter employed by 
c w ~ y  probe call. Aightmtn(,) necessarily increases monotonically in j. Given w and i, IC,,, 
is siiiiply thv greatest index j greater than or equal to i such thitt A~,,,,-,,,(,) - 

1 

< w(2). If 1 



Definitions 

WT Sum of all modules weights: WT = wi 

Qij  

Aj 

Processor cost if assigned subchain Mi,. . . Mj 

Total “remaining” load after assigning Mj: Aj = Cj + Cp=j+l wj 
Rij = Ci-1 + Sij + Cj; 

function PROBE1 (w) :Boolean; 
{ 

i = 1; p =  1; k = 0; Am;n = WT; 
while p 5 n do 

for j = i to rn do 
{ 

if Q;j 5 w and Aj < Am;,, then 

AAn = Aj; 
12 = j ;  

{ 

1 
Assign subchain M;, . . . , Mk to processor p ;  
if b = m t hen  return(true); 
i =  k + I ; p = p + l ;  

1 
return(fa1sc); 

1 

Figurc 4: Jqbal’s probe function 

k,,,,, exists, it can be found in O(1ogm) time with a binary search. If the search fails to 
fiiitl R fcasible solution then no solution exists. 

HaviIig fuuiitl k,,,, we can find the I~*er bound 2mn. Note first that 

As j tlclcrmscs, Sjkrn,&. necessarily increases, and eventually exceeds Ck,,,. We choose km;n 

11 



to be the largest j where this occurs. For any j < khn we have 

Conscqiicntly, any j < kAn may be ignored as a solution. If k A n  < i, we take kAn = i. 
Sincc- S,k,,,. mist increase as j decreases, IC&,, can be found with another binary search, 

on the “virtual array” Sik,,,,,, . . . , Skmaxkmar .  Note that for any z j ,  s;j = s1j - sl(iVl), so 
that S;j can be computed in constant time if the Slk’s are pre-computed. This means that 
t h  virtual array need not be explicitly computed, and the search for kfin requires only 
O( log m )  time. 

A linear scan for feasible points in [khn ,k , , ]  will find the feasible point minimizing 
A. Sincc we have assumed that the communication costs are bounded from above by some 
roxistarit iiitlcpcntlent of m, the linear scan takes O(1) time. Figure 5 presents pseudo-code 
tlt.scribiIig this ncw O(n logm) probe function PROBE2(w). Note that a returned value 
of falsc occurs only if for some processor there are no feasible assignments. Like Iqbal’s 
probe, PROBE2 will return true if a feasible mapping is found which uses fewer than n 
proccssors. 

4.2 Improved Search Organization 
At, this poilit we could simply sort thc O ( m 2 )  unique processor loads, and find the smallest 
fciLSi1)lt oiic with O( log m)  calls to PROBE2. This algorithm’s complexity is dominated by 
t h :  0(m2 logm) complexity of sorting. To further improve the probing approach we will 
lisvc to reduce the cost of organizing the search. We do so by replacing the O(m2 logm) 
mst of  fiiitliiig O(1ogm) probe values with an O ( m  log m)  cost of finding O ( m )  probe values. 
Bc.caiisc tlw probc calls are cheap, increasing their frequency to avoid a sort improves the 
ovtm11 performance. 

For tlic rnoiiitmt, assume that a11 communication costs are zero so that every processor’s 
cumition time is of tlie form SaJ. Furthermore, we extend the definition of S;, to allow 
2 > 1: 

Tliis dtdinition ciicoinpasses the earlier one, and also shows that Si, can be computed in 
coristitiit tiiiie if all slims of the form Slk are known. 

We are itl)lc to infer that some execution time weights are 1argc.r than others, regardless 
of tlie riiodiile weiglit values. In particular, S;, < S a k  whenewr j < k, and S,, > s k ,  

whcricvcr i < k. This partial ordcring is illustrated in figure G n-ith a dominance matriz. 
Row ciitrics asccwd in value froin left to right, column entries descend from top to bottom. 
By transitivity it, follows that S,, < S,, whenever i 2 u and j 5 1 7 .  

Wc will call any contiguous portion of a row a strip. On any given strip we can use 
1)iiiiuy scwrli niitl a probe function to identify thv entry with smallest execution time 
wciglit, that satisfics the probe. This observation allows us to eliminate large portions of 

s,, = S I ,  - SI(*-l). 
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function PROBE2 (w)  :Boolean; 

i = 1; p =  1; k = 0; 
{ 

while p 5 n do 
{ 

A n i n  = WT; 
w(i) = w - c i - 1  + SI;; 
Use binary search to find kmx: the greatest j 

If no such k,, exists return(fa1se); 
Use binary search to find khn: the greatest j 5 k,,, 

for j = k,;, to E,n,, do 

such that Arighlmin(j) 5 w( i ) ;  

such that S j k m a x  2 CkmaX; 

if R;, _< w and Aj < Ahn then 
{ 

1 

i = k +  l ; p =  p +  1; 

Ainiri Aj; 
k =  j; 

Assign subchain Mi, . . . , Mk to processor p ;  
if k = m t hen  return(true); 

I 
1 

Figure 5:  Improved Probe Function for Linear Array Problem 

the search space. Consider a rectangular region of the dominance matrix that is h entries 
hip$ imtl I critrics long. Considcr the effect of doing a binary search on the strip which best 
I)isclct,s tht: rcctanglC into eqiial sized pieces. Let Sij be the minimal feasible strip entry 
foiintl Ly t h c .  s<~iircll. Any S,, with u _< i and v >_ j lies above and to the right of SiJ; any 
siicli mtry t1orninatc.s Si, and may tlierefore be discarded as a solution possibility. Any 
S,, with x 2 i and y < j lies bclow and to the left of Si,; any such entry is dominated by 
thc value St(,-l) which is known to have failed. Such entries may also be discarded as a 
soiiitiori possibility. Since tile strip hisects the rectimgle into eqiial sized pieces, one half 
of tJic rectangle's entries are eliininated by the binary search; the remaining entries fall 
into xio 1~101'~ than two rcgions which are again rectangular. These points are illustrated 
g~;Il)11i~illly in Figiirc 7. In order to find the minimal feasible solution within the rectangle 
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s11 S I 2  s 1 3  s 1 4  s 1 5  s 1 6  s 1 7  s18 s19 

s 2 l  s 2 2  s 2 3  s 2 4  s 2 5  s 2 6  s 2 7  s 2 8  s 2 9  

s31 s 3 2  '533 s 3 4  s 3 5  s 3 6  s37 s 3 8  s39  

s41 s 4 2  s 4 3  s 4 4  s 4 5  s 4 6  s 4 7  s 4 8  s 4 9  

s51 s 5 2  s 5 3  s 5 4  s 5 5  s 5 6  s57 s 5 8  s59 

s 6 1  s 6 2  s 6 3  s 6 4  s 6 5  s 6 6  s 6 7  s 6 8  s69 

s 7 1  s 7 2  s 7 3  s 7 4  s 7 5  s 7 6  s 7 7  s 7 8  s 7 9  

s81 s 8 2  s83 s 8 4  s 8 5  S S S  s 8 7  s 8 8  s 8 9  

SO1 s92 s93 s 9 4  s 9 5  s 9 6  s97 s 9 8  s99 

Figure 6:  Dominance Matrix of S;j values 

it  sufficcs to apply this procedure recursively to the remaining rectangles. The recursion 
stops when a rccta.ngular region consists only of a strip; then a binary search finds the best 
fciisille strip solution, if one exists. 

The efficiency is enhanced if throughout the search we maintain variables V, and V,. 
V, rc:cords tlie 1;irgcst execution time tested so far which failed the probe test, V, records 
t,ho sinallest cxcciition time tested so far which satisfies the probe. If the search procedure 
calls for a vtlluc V to be tested, tlic probe function needs to be called only if Vj < V < V,. 
If tlic probe is called, either V, or V, will be updated, depending on the probe outcome. At 
t h :  cnd of the scnrch procedure V, contains the minimal mapping cost. If the associated 
mapping has not been saved, a last call to PROBE2 will create it. 

The lattice search technique calls the probe function more often than a binary search 
over a fully sortcbtl srt of bottleneck values, but avoids the high cost of sorting that set. Its 
iitdity rtBsts in that it  calls the probe function only O ( m )  times, a fact we now demonstrate. 

Define a rectan,gle evaluation to be the process of choosing a strip on a given rectangle, 
fiiidiiig tlic niininmni strip mluc satisfying PROBE2 (if any), and identifying the smaller 
rcctanglcs, called children, which must also be evaluated. It is helpful to view the search 
1)roccss tis it scqiionce of steps, where step 0 is the initial rectangle evaluation on the entire 
rniitrix. Step 1 consists of evaluating all children of step 0. In genera.1, the ith step is 
crornposoti of all cviiluations of children defined by the previous step. We will say that a 
iiiatrix cntry is active a t  the beginning of the ith stcbp if it lies within some rectangle that 
is cvaliiiitcd tluriiig the i t l i  step. We will also say th;d an entry is evalunted during the ith 
s t , q )  if it, l i w  on i i  strip over wliich ti. binnry search oc(*urs during tlie i th step. An evaluated 
(*iit,ry ~ i c w l  not iictiially bc touclictl by the search. Three o1)serva t,ions are key. 

0 Tlic iiiiriil>c:r of iictive e1itric.s in any matrix column dccreascs by one half every step. 

0 Tlic total 1iiiid)cr of evaluatcd entries during iiny stel) is no greatcr than m. 
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strio se 
second 

region dominates known solution Do m in ance M at r ix 

Least Feasible Solution @ on Strip 

region dominated by infeasible solution 

Figure 7: Lattice Search Method 

- 
I 
I 
1 

strip searched 

strip searched 
second step 

first step 

0 Tlie maximiim number of rectangles which are evaluated at step i is 2'. 

To we that the first point is true, consider any column in an evaluated rectangle. If the 
point, foiind by the binary search lies in the column, or in one to the left, then only the 
lowcr half of thc: column entries are lcft active. If the point lies to the column's right, 
t h i  only the ii1qwr lislf of tlic coluiiin's entries are left active. The second point follows 
from the observation that during n stcp, no two evaluated rectangles overlap in any row or 
coliixnn coordinatcs. If we sum the horizontal lengths of all evaluated rectangles the result 
is c-xnctly ~ t t .  Thc third point is obvious, since any rectangle evaluation spawns no more 
than 2 children. 

From the first point we infer that there are no more than logm steps in the search. 
Thc number of PROBE2 calls required is the sum of calls by the binary searches involved. 
iiccnuse of the concavity of the log opcititioii, the niimber of calls at a step is maximized 
when there are as many binary searches as possible, over short lists. A binary search on a 
list of k items reqiiires no more than logk+ 1 probes. There are no more than m evaluated 
points at  il step, and no more than 2' binary searches. The number of probe calls at a step 
is (~oIlsr(li1~iitly ?mundcd from above by 2'(10g(n~/2') + 1). By summifig over all steps, we 
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find the xiurnbcr of PROBE2 evaluations to be bounded by 

~ O K  m IOK m lon m 

i=O i=O i=o i=O 

< 4m. 

Tho evaluation of E ? ,  i2' is accomplished using a general formula found in [9]. At the 
cost of adopting O ( m )  probe calls, we avoid the cost of a full sort. There is a payoff. 
O ( m )  calls to an O ( n  logm) probe gives an O(nm logm) algorithm, over the O(m2 logm) 
ii.ltcrnat,ivc. 

This search technique relies heavily on the lattice-like partial ordering of the dominance 
matrix. Rctlcfiriirig t,hc dominance matrix by replacing each Sij with Qij = C;-l + S;j + Cj 
tlttstxoys that pitrtiid ordering. However, a similar ordering can be discovered in O ( m  log m) 
t,imc with the following observation: 

CO + s1j t cj < CO + Slk + ck s1j + cj < S l k  + ck 
Sjj + cj < si, + Ck 
Ci-1 + Sij + cj < cj-1 + Sjk + ck. % 

If w(: w ( m  to l a h l  c.ach matrix clcmcnt, with its rank within a sorted row, the implications 
;il)ovc S ~ I Y  that, witlliin a column all such labels are identical. A similar observation holds 
if wo 1al)cl t:lcnicrits with their coliinin sorted rank. By sorting the first row we can create 
il.11 array T wlicrc ~ ( i )  = j if the ith smallest element of a row is found in the j t h  column. 
Likcwisc, by sortixig some column we can create an array p, where p( i) = j if the ith largest 
ttlciwnt, of i i  coliiirixi lies in row j. p and T are created once in O(nz log m )  time. Ima,gine 
IIOW that wc crcta t,c a sorted dominance matriz by physically re-arranging the dominance 
IIiitt*riX columns so that the rows are ordered, and physically re-arranging the rows so that 
t h e :  columns a.re ordered. The sorted matrix has the desired lattice like partial ordering. 
We: (:it11 iiso thc smic search techriique as before on the sorted matrix. It is not necessary 
thugl i  to create thr, sorted matrix. Whenever we need to access the i j  element of the 
sortxtl matrix, wc crcate the p( i ) ~ ( j )  clement of the dominance matrix. 

The O(nt log I n )  cost of creating T and p is masked by the O(nm log m.) cost of calling 
PROBE2 O ( m )  times. The overall complexity is again O( nm log m). Even lower complex- 
ities are possible if we employ the linear array itself to solve the mapping problem. 

4.3 A Parallel Approach 
Oil(. i t ~ ) l ) ~ ~ i l ( * l l  tm piirallclizing oiir serial algorithm is to call the same O( m) probe values 
i is  tJic wri;il itlgoritliin, using the linear array to compute PROBE2 in parallel. The 
oilly olqmrt iuii t,y for parallelisnl licre is to parallclize the search over [ k m i n ,  ICmax], and 
t h i  coiihii ic t h  individual minimums found by tlie processors. It takes each processor 
O( log~rt) time t,o fintl thc interval endpoints, constant time to find a niiiiimum over its 
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designated subregion of the interval, and then R(n)  time to find the global minimum. 
Asymptotically we lose with this scheme: the complexity of a single PROBE2 call is 

A different approach is to have each processor perform a set of PROBE2 calls indepen- 
dently, and in parallel with other processors. The strategy we propose is to decompose the 
implicitly sortcd dominance matrix into n regions which are assigned to the processors. 
Each processor probes its space to find the optimal assignment within that space; an O(n)  
t h e  combination of results finds the optimal mapping. 

We assiiine that cvery processor has enough memory to solve the problcm alone. The 
rriodiilr: and communication weights are initially loaded intd: the processors. Each processor 
wrially computes its own copy of all sums of the form Slk, its own copy of the right-mzn 
array, and its own copy of T and p. Each processor is now in a position to probe some 
rcgion of the bot,tlcneck space. The geometry of the regions we choose has an impact 
on the complexity. An analysis similar to the one presented for the serial case shows 
tliiit the number of probe calls required to evaluate an h x 1 (where h 5 1 )  rectangle is 
O(h + h log(I/h)). Under the constraint that h - 1 is constant, it is not difficult to see that 
wc warit to make h as small as possible. The optimal approach is to assign each processor 
a ( m / n )  x m region of the sorted dominance matrix. The parallel time complexity is then 
tlie siini of an O ( m  logm) cost to load the problem and create auxiliary data structures, 
an O ( m  logm log 11)  cost to perform the searches in parallel, and an O ( n )  cost to combine 
tho processor7s individual optirnal solutions. The O ( m  log m log n)  cost dominates. 

O( 71 log m + 12”). 

5 Shared Memory Problem 
Our approach to the shared memory problem again uses a probe. We first show how to 
rcduce the cost of a probe based on Kernighan’s algorithm [SI from O(m2)  to O ( m  logm). 
We then adopt the same search strategy as we did for the linear array problem and achieve 
an O(iri2 log m )  time algorithm. Finally, we discuss three approaches for parallelization. 
Onc approach dividc. the sorted dominance matrix into regions which are searched in par- 
allcl. This approach yields an algorithm with an O((m2/n)  logm logn) time complexity, 
a d  O(nm) spacc complexity. A second approach uses a parallel sort, and then serialized 
binary search and probe calls. This algorithm reduces the expccted time Complexity to 
0(( m2/n)  log m,), but iricreases the space complexity to O(m2) .  Our third approach par- 
allelizes thc prohc function, and is appropriate when n << 7n. Under technical conditions 
on n and 7n, its cxpccted tinic complexity is O ( ( m 2 / n )  logtn), and its space complexity is 
011ly O(7n). 

5.1 An Improved Serial Solution 
Iclhl’s approximation method cites an algorithm described by Kernighan[S]. The algo- 
r i t h i  partitions 8 chain of mdules, subject to the contiguity cmstrsint, and also subject 
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to the constraint that the sum of module weights in any partition is less than some fixed 
and pre-detcrmincd value w. The cost of a partitioning is the sum of the costs of links 
c:xpc)scd by the partitioning. He formulates this problem using dynamic programming, and 
solvcs the optimality equations 

V ( 0 )  = 0 
V ( j )  = Cj+ min {V(i  - I)} for j = 1,2 ,  ... m. 

V ( j )  can be iiitcrprcted as the minimal cost of partitioning modules A,fl through Afj, 
iiicliitliiig the cost of separating A l j  from Mj+l. Once V(m.) is determined the solution is 
foiintl by backtracliirig. If j defines V(m)’s min term, then j + 1 is the left endpoint of the 
riglitmost, partition; if i determines V(j)’s min term, then i + 1 is the left endpoint of the 
ncxt partition, and so on. 

This function can be used as a probe. If the chain can be partitioned into n or fewer 
I)iccc,s siihjcct to the partition loading constraint, then the partition defines a feasible 
mapping; furtlicrmore, it minimizes the sum of communication costs among all mappings 
with processor loads less than 20. The probe compares the sum of communication costs 
with tlic probe constraint w ;  if that sum is smaller, and if n or fewer partition elements 
are defined, it returns the value “true”. So long as w is kept fixed for all problem sizes this 
solution has O ( m )  complexity. However, we vary w with every call to the probe function. 
111 the worst case w is WT, the sum of all module weights, and the algorithm is O(m2) .  
Iqlml missed this fact, and in [7] ascribes an O ( m )  complexity to this algorithm. 

Kernighan’s trcatment considers w to be constant, so that the min term for every V(j)  
ri1.11 be d(~tcrmiIicc1 in constant time with a linear scan. Since our w’s will vary and may 
I ) C Y X ) I ~ C  quite large, we need to avoid linear scans. The min term can be efficiently found 
with thc: aid of a search tree which organizes domain points on the basis of their V values. 
Tlict tmc initially contains a single record corresponding to the boundary condition V(0)  = 
0. A pointw where-i,q(O) to that record is stored to aid a future deletion. Subsequently, 
wc c.oxnpiit,c: each V ( j )  by first identifying the indices over which its min term ranges. The 
minilrial iiic1t.x itllill satisfying S,, 5 ~7 can be found with a binary search on Slj, S2j, . . . , Sjj, 
a.~ i ( l  t h c i  uhere-i.s pointers are uscd to remove all tree records for V ( i )  with i < z ~ n .  The 
swrc..li trcc is tlicn mamined for the cntry whose key is least; this entry defines V ( j ) ’ s  min 
terrri. V ( j )  is coiiipiited by addiiig the min term and Cj. A record representing V ( j )  is 
iiiscrt,ctl i n to  t k  tme, mid the pointer where-is(j) to that record is saved. The auxiliary 
v;t.liic- back-p tr ( j )  is sct equal to tlie index of the position dcfining V ( j ) ’ s  min term. 

O ( m )  t rw inscrtions and dclctions cost,s O(?n log 7 1 2 )  amortized time using splay trees[l5]. 
Thc iinl)rovcd prolx function can be used in conjunction with the search strategy 

tlc*scribcd for thc linca?.r array problcm. Note that a dominance matrix with S;j type 
cmt,ric:s siif€i(:es. Lcttirig S( b)  denote the minimized sum of communication costs with b 
iLs bo t thcck  coristra.int, recall that at the termination of t.he binary search we will have 
tlctdcrminccl thc smallest bottleneck value & such that 2 S( b) .  Thc optimal sum-bottleneck 

i s  j 
Si, I w 
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soliltion is then cither b or S( t ) ,  where & is the greatest bottleneck value less than b. Since 
h Inily be tlie soliltion wc scek, i t  is important to be able to access it quickly. Suppose 
t , l i i k t ,  throughout thc search we maintain a value V,, the smallest bottlcncck value la.rgcr 
than V,  (the least known feasible solution). We claim that & must either be the value 
of V, at tlic end of the search, or be adjacent to b’s location in the sorted dominance 
nintrix. Thc claim is established by contradiction-suppose that 6 is not V, and is not 
adjacent to b. .& is eliminated from consideration as the smallest bottleneck exceeding its 
associated communication cost in one of two ways. b may be eliminated because a smaller 
bot,tlcncck value satisfies the probe. This bottleneck value can only be b, and would have 
to t x  adjnccnt to &, a condition we have assumed does not occur. & can also be eliminated 
if i t  larger hottlcncck value fails the probe. However, this is impossible because & itself 
passes the probe. This establishes the contradiction, and thus the fact that given b and 
V,, & can bc found in constant time. 

The cost of O ( m )  probe calls, each with complexity O(mlogm), is O(m2 logrn). Note 
tliat, this same complexity is achieved if we sort the O(m2)  bottleneck values and call the 
pml)c: O(1ogm) times. However, the former approach needs O ( m )  space, while the latter 
rcyiiires O( m2) space. 

- 

I 

5.2 A Suite of Parallel Approachs 
Tlirw tliffcrcnt approaches for parallelizing the algorithm suggest themselves. One mimics 
oiir lmrallrl linear array solution, and simply divides the dominance matrix into (m/n)  x rn 
sizcd regions which are searched in parallel. Each region requires O( (rn/n) log n )  probe 
C i t l l s ,  a cost which dominates the cost of combining the various processors’ optimal so- 
liit,ions. Tlic ovcrall time complexity of this approach is O ( ( m 2 / n )  logm logn). Each 
prowssor rcqiiircs O( m )  space. 

A second approach is to compute and sort the O(m2)  bottleneck values in paral- 
Icl. Techniques such as those described in [ll], and [19] are appropriate, and have an 
O( ( 71z2/72)  log m) expected parallel complexity. A binary search over the sorted values 
rIii\y tlicii bc (~iiil)Ioyccl, with a scrial probe. O(1ogm) probe calls are made, each with 
O( r r i  lognt) roinplcbxity. The resulting algorithm has an O(max((m2/n) logm, m log2 m } )  
cqwrtcd parallel t h c  coniplcxity, but requires O( m 2 )  spacc for the sort. 

A n  0 ( ( 7 1 ) 2 / 7 t )  log 7 1 1 )  expectcd tiriw complexity with O( ni) space requirements is possi- 
1)Ic i n  tlie cvcmt, t,liitt sn3 < m. In this case we can effvctively parallelize the probe function. 
Oiir ii1)I)r~)it(*ll rvlic-s on the likelihood tliat if V ( i )  defines the min tcrm for V(j) ,  then i << j .  
If V ( j )  docs not tlcpond on “iicar1)y” d u e s  of V, then “nearby” values of V can be com- 
I ) i i t , c d  in I)iI1tlil(’i. Of coiiise, if \ ‘ ( i )  and V ( j )  ZE c.Gmpfitcc! in para!!c! and it turn:: out 
t h t ,  V ( j ) ’ s  iniii t,cwn should haw lxcn V ( i ) ,  then we need to recompute V ( j ) .  We will 
scc tlioiigh that, this occurs infrequently under our stochastic assumptions about module 
i l l i t1  weight val~ics. It should be noted that unlike the other complexities derived in this 
l)iti)(’r, the :nsgx:it,:idcs of the constants of pro:)ortionality are not obviously low, Without 
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further discussion on this topic, we note here that when the module weight distribution’s 
coef ic icnt  of variution cs/p is low, then the constants of proportionality are low. 

A gcncral description of the algorithm follows. We divide the domain into successive 
blocks D1, D2, . . . , B,,,,,,, of n consecutive points each. We will compute all values of V 
within a block in parallel, assigning one processor per block point. The processors create 
and comhinc information describing the solution of V in the block area, and check to ensure 
that no value computed in the block depends directly on another value within the same 
block. If such a dependency is detected it can be corrected with a serialized computation 
of the block values. Once the block values are correct the processors move on to the next 
I~lock. Tlic backtracking phase to find the optimal partition is serial. We turn next to a 
rnow dc.tnilc:d tlesciiption of this procedure. 

Tlic iilgorit,lini bcgins with every processor initializing its own search tree such as was 
iisc-tl in the serial vcrsion. The search tree may reside in the processor’s local memory. The 
globs1 mcniory will contain the V array. Processor P; then computes V(z). Since n << m, 
it, is unlikely that the probc weight w will be small enough so that SI ,  > w, and it is 
highly likely that, V ( i )  = C, is the correct value for V( i ) .  The processors cooperatively 
compute the minimum value rnl = minl<;<,(V(i)}. - -  It is well-known that this can be done 
in 1ogn steps with a combining tree as shown in figure 8(a). The entire tree is left in the 
g lo ld  memory. Note however that communication is serialized, implying that the cost of 
hiilcling thc tree is O( 7 2 ) .  Figurc 8( b) illustrates the fact that the minimum value of V over 
tlic: last k itcms of i i  block can always be recovered from the combining tree by esamining 
no more than logn entries. If SI, 5 w then rnl is the minimum value of V over the first 
1)lock. Every processor inserts ml into its local search tree, and for the purposes of future 
tlclction records a pointer to its location. 

Tlic cornpiitation now proceeds in stages. The values for Bk are computed by the bth 
stJiig(’ with the following opcrstions. 

1. Scrial Stcp: Note that I3k consists of integers in [(k - 1)n + 1,knI. We must first 
dctt:rrriixic whctlier it is feasible to compute all of Bk’s points in parallel. A necessary 
condition for this is that the indices of V(kn)’s min term completely encompass Bk. 
This is chcckccl by determining whether S ( ( k - l ) n ) ( k n )  5 w. If not, then we cannot 
evduate all of Dk’s points in parallel. In this case we serialize the computation of 
the block, and advance to the next block. 

2. Pardlcl  Stcp: Processor P, is responsible for computing V ( ( k  - 1)n + j ) .  Pj first 
uscs i l  binary search to fiiitl the left endpoint im;,,(j) of tlie indices over which its 
mill tc-rrn is ttikcn. P, theri dcletcs from its search tree all entries representing blocks 
including and lying to the lcft of i , in(j) .  Let z , ( j )  be the right endpoint of the block 
coxitaixiirig i,,”,,(j), and let vl(j) he the minimuin value of V over [Z,~,,(j), i 7 ( j ) ] .  v,(j)  
can bc: foiintl hy cxsmining the combining trec over in“,,(j)’s block. 

3. P ~ r d l ~ l  Siep : Processor Pj finds the minimum value vg(.j) within its own search 
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min over this range 

0 Elements to examine to find min 

Figure 8: Combining tree to compute the minimum of n values 

tree. Then Pj computes V ( ( k  - 1)n + j )  = C(k-l),,+j + min{vl(j), vd(j)}, and records 
in local memory a back-ptr value giving the index which defines min{vl(j), ~ ~ ( j ) } .  

4. Parallel Step: The processors cooperatively compute the minimum value Ob of V 
ovcr the current block, with a combining tree. 

5 .  Seria2 Step: Pn checks to see if its current V value is correct, by comparing V(kn) 
with Ckn + vb. If the latter quantity is smaller, then the earlier computation was 
incorrect. Because the range of V(kn)’s min term includes all of Bk, if any V com- 
piited in Bk is incorrect, V ( k n )  will be incorrect and will be detected. When this 
occurs, tho block’s points are recomputed serially. 

Over tlic- coiirsc of the algorithm, an individual processor inserts, deletes, and searches 
for m / n  items in tlic search tree. Collectively this exacts an O ( ( m / n )  log(rn/n)) amortized 
tini(* cost. 111 thc abscnce of serialization, for each of m/n stages, step (1) takes O(1) time; 
iioting that comniunication is serialized, step (2) takes O(max{n logn? log rn)) time; step 
(3) takcs O(log(ln/?t)) time; step (4) takes O(n)  time due to serialized communication, and 
stvp ( 5 )  takcs O( 1) time. In the absence of serialization the overall complexity depends on 
t l ic  r(htionshi1, bctwcen m and n. If nlogn > logni, then the O(n1ogn) cost of step (2) 
clomiriatcs a r i d  tho algorithm has an O(m1ogn) cost. If nlogn 5 logrn, then the O(1ogrn) 
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cost of stcp ( 2 )  dominates, yielding an O((m/n) logm) algorithm. As m grows we expect 
that cv(mtuii11y the latter case will hold; for simplicity in exposition we assume that m is 
siifficicntly lnrgcr than n to give an O((m/n)  lognz) parallel time complexity in the absence 
of  serialization. 

If the computation is serialized, a shared variable can indicate which processor is allowed 
to compute its vnlue. A processor proceeds as before, except that the minimum value of 
V seen so far within the block must also be considered in step (3).  Each point calculation 
tiikcs O(1ogm) time, so the entire block takes O(n1ogrn) time. 

Without scrislization the parallel complexity of this probe is O( (m/n )  log m). Serial- 
ization may occur at step (1) when w is too small in relation to n. Because the m modules 
iriiist be dist,ribut,ed over only n processors, we expect that each processor receives on the 
ortlw of m/n modulcs, and that the values passed to the probe tend to be from convolutions 
of approximately m / n  module sums. Intuitively then we see that serialization shouldn’t 
occur often, provided that rn is sufficiently larger than n. The subsection to follow shows 
that if 8n3 < m then serialization occurs so infrequently that the expected complexity of 
the cntirc algori tlim is O( ( m2/n) log m). 

5.3 Expected Complexity When 8n3 < m 
If we can reduce the frequency of serialization to O(l/n), the contribution of serialization 
to  thc algorithm’s overall complexity will be O((m2/n)  log m)  which is exactly the parallel 
(*oxriplexity. We will show that this occurs when rn is sufficiently larger than n. We do so 
in tlirec stq)s. First we show that if w > 2np,,,, then the probability of serialization being 
rcyiiircd at step (1) of the parallel probe is O(l /n) .  Secondly, we show that if w > n2pm/2, 
tlicm the probability of serialization being required at  step ( 5 )  of the parallel probe is also 
0 ( 1 / 7 ~ ) .  Finally, under some simplifying assumptions we show that when 8n3 < m, then 
1)rol)c calls with U J  values less than n2pm/2 occur so infrequently that the expected cost 
t lr ic  to scrialization is only O( ( m2/n) log m). 

Consider thc parallel probe function. The first chance at  serialization occurs in step 
(1). Let p l ( ~ ~ )  lie t,lie probability that the sum of n module weights associated with a 
I~lock cxcccds t i ) .  Ri: assume that every module execution time is drawn independently 
froiii i t  co11111io11 clistribution with finite mean p m  and standard deviation ow. Likewise, we 
assume that the communication costs are independent and identically distributed, although 
t h y  arc allowctl to Lc from n diffvrciit distribution. Our analysis rests on two facts from 
I)rol)iiLili ty theory. 

0 If XI,  X2, . . . , .Yk are IC independent identically distributecl random variables with 
a;X; mean 1 1  and standard deviatioii o, then the mean of the 1ine;Ir coni1)iiiation 

is 11 ( I , ,  i i i l t l  the staiidard deviation is O J ~ .  

0 CI~ebychev’s Inequality If X is any random variable with mean 1-1 and standard 
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deviation u, and e is any positive number, then 

1 
Prob{JX - pl > eu} 5 - 

€2 - 
Tlicsc facts may be found in any standard probability text, such as[lO]. 

Let M ( n )  be an n-fold convolution of the module weight distribution. M\.I) n a s  mean 
rip,, and standard deviation u m f i .  Serialization is chosen at  step (1) if the sum of 
t h  block's n rnodule weights exceeds w. Appealing to a slightly re-organized form of 
Clichychcv's incqitali ty we have 

1 
Prob{ M(n) > npm + eumfi )  5 - 

€ 2  - 
for m y  positive coiistant e .  Choosing w = n p m  + ecrm&i and solving for e ,  we have 

wlicncvcr w > np,,. If w > 2npm, then the right hand side of this inequality is O ( l / n ) .  
We: have provcd thc following theorem. 

Theorem 1 Let pl(w) be the probability of serialization at step (1). If w 2 2npm, then 
~ V , ( W )  = O(1/7i). 

Now let p2(io)  Lc thc probability that serialization is chosen in step (4). Th' 1s occurs 
when the: rnin t,ctrIn of some V ( j )  is defined by some V value in V( j ) ' s  block. To show that 
p 2 ( w )  = o ( l / n )  wlicri 10 > n 2 p , / 2  we will need the following technical lemma. 

Lemma 2 For every j = 1,2 , .  . . , rn l e t  

L ( j ,  w) = { V ( i )  I i < j ,  Sij 5 w}. 

TILE~L for ull j and TU, iniiiL(j, w) 2 minL(j - 1,w).  

Proof 
Notc that i l  is iioccssarily no grcater than i,. This implies that 

Su~q)osc: L ( j  - 1, w) = { V(il) ,  . . . , V ( j  - 2)) and L( j ,  w) = {V( iu ) ,  . . . , V ( j  - I)}. 

min{ V(z ,  j ,  . . . , V ( j  - 2)) 2 niin L ( j  - 1, u'j. 
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so that, 

0 
I 

The main purpose of lemma 2 is to aid in the proof of the following lemma. 

, Lemma 3 Let  V ( i ) ,  V ( i  + I), . . . , V ( i  + N - 1) be a consecutive sequence of V values. 
Tiicn the probability that the minimum value occurs an one of the last n sequence elements 
i s  no greater than n l N .  

Proof Let q, be the probability that V(i + j )  is the minimum in the sequence. We first 
sliow that 

I 

I 90 2 91 2 - 2 q N - 1 -  

Coiisidcr thc rnotlulc wcights to bc fixed, but let the communication weights be random. 
Lot ,I =< c,, c ; + ~ ,  . . . , C , + N - ~  > be any random vector sampled from the joint distribution 
of tho coiniriiinicatiori costs, and suppose that under this joint vector V(i + k) is minimum. 
By l(minn 2, rii i i i  L ( i  + IC - j, w )  5 min L(i + IC, w) for all j such that 1 5 j 5 IC. Since 
V ( i  + IC - j)  = xninL(i + L - j ,  w )  + c i + k - j  > minL(i + I C ,  w) + c;+k = V(i + IC), we must 
havc c,+k-J > c , + k .  Suppose we swapped the costs c;+k and c ; + k - l .  The swap does not 
affcct any V ( i  + k - j) with j > 1, but clearly V(i + IC - 1) < V(i + k). Furthermore, any 
V v;iliic~ t,o tlic lcft of V( i  + k - 1) is larger, because 

xriixi L( i + A: - j ,  71,) + Cj+& j > iriin L( i + I C ,  w) + c i + k  

niinL(i + I C  - j , w )  + cj+k-j > minL(i + k - 1 , w )  + Cj+k. 

+ 
i 

Aiiy v;tliic to tliv riglit of V ( i  + L - 1) must also be larger-the man term for some values 
V ( i  + k + j )  to  t h  right of V ( i  + IC - 1) may change to either the new value of V(i + IC) 
or V ( i  + k - l) ,  Init, thc new value of V ( i  + IC + j )  cannot be lcss than the new value of 
IT( i + k - 1). Bc.c-rriisc* tlic comriiiiiiication costs are independent and identically distributed, 
t lw  r;ixicloni vector wliich swaps the values ~ i + k - ~  and c;+k in J has the same probability 
I i i i w  or tlcmsity as J .  Conscqucntly, for any random sample where V ( i  + k) is minimum 
t h r e  is i t x i  cqiidly likely sample where V(z + k - 1) is minimum. As this is true for any 
s;inipling of modiilc execution wcights, we must have 

~ 

~ For iLIly dcsccndilig sequcnce of N values, it is always true that the sum of the last n 
c.lc:iilcmt,s is ]io grcxatvr than n timcs the sequence average. The sequence average here is 
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1 / N  bcxmsc thc qj’s must sum to 1 .  The probability that the minimum occurs in one of 
tlic Iilst r i  positions is the sum of the last n sequence values, and consequently is no greater 
tlian n / N .  
0 

At step ( 5 )  serialization is required at block B k  if V(kn)’s min term is defined by some 
value in Bk. Lemma 3 tells us that if L(kn,w) has N elements, then the probability of 
scrialization is no greater than n / N .  If we can keep the size of L(kn,w)  on the order of 
n2,  then serialization occurs at step ( 5 )  with O ( l / n )  probability. The size of L(En,w) is 
a random variable which we call N*(w) .  k ( w )  is no greater than the expected value of 
n E [ l / N * ( w ) ] .  The theorem to follow bounds this expectation by O ( l / n )  in the event that 
10 > n2pm/2 .  

Theorem 4 If w > 7 t 2 ~ m / 2 ,  then p2(w) = O ( l / n ) .  

pz(w)  = Prob{one of Bis V terms is minimum in L(kn, w)} 

5 nE[1/”(w)l (1) 

where the expectation is taken with respect to the distribution of N*(w).  The function 
f(x) = 1/x is dccrcasing, and is bounded from above by g ( x ) ,  defined below: 

1 
4/n2 If x 2 n 2 / 4  

If 15 x < n2/4  

Dc>cause g(x) 2 f(z) for all x, we must have E[g(N*(w)]  2 E [ l / N * ( w ) ] .  Now N*(w)  is 
lr-ss than n 2 / 4  only if the sum of n2/4  or fewer module weight random variables is greater 
tlian n 2 p m / 2 .  Tlic: proof of Lcmma 1 bounded a very similar probability using Chebychev’s 
inCq‘1ality. Applying the same methodology here, it can be shown that the probability of 
N ’ ( t o )  hii ig  less than n 2 / 4  is O(1/n2), if w > n2p,/2.  We then have 

A1)plying this to relation ( l ) ,  the lernma’s conclusion follows. 
0 

Theorcms 1 and 4 tell us that if the probe weight w is large cmough then serialization 
occurs inireqiicntiy. ‘Ne next show that if m is suficiently larger ilian ix we can expect the 
probe weights used 1)y our algoritlim to be large enouqh to satisfy the theorems’ conditions. 
A note of  W i ~ r I i i I l g  is in ordcr. The results to follow relate to pristine convolutions of the 
xnotlule weight, dist,rihutions. Tlie values of w clioseii by our search procedure are indeed 
sunis of 11iod111c: weights, but the distribution of thme silms are affected by the history of 
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tliv scarch behavior. For example, suppose we choose to probe with value Si j ,  found in the 
iippcr left rectangle identified by the the first rectangle evaluation. Sij is not identically 
distributed with n. sum of j - i + 1 independent module weights. We know that the probe is 
satisfied on S ; k  for some IC > j-this was established by the first rectangle evaluation. We 
iilso know that for some IC > i, S k l  fails the probe. The former observation tends to make 
Si, cclarger’7 probabilistically, because some portion of the chain it represents is involved 
with sums known to succeed. Likewise, the latter observation tends to make S;j “smaller” 
hecause the h f k  to Mj subchain weight must fail the probe. The affects of the search 
behavior on probe value distributions appear to be too complex to deal with analytically. 
But because of thc conflicting influences on the probe value distribution it seems likely that 
thcse cffccts on the size of the probe values are second order compared to the effects on 
pirc module weight convolutions of increasing the size of the sums. By assuming that the 
probe wcights arc drawn from pure module weight convolutions, we can make statements 
; h m t  the probability of the probe function being satisfied. 

Thc discussion to follow speaks in terms of w being drawn from a convolution of k 
inocliilc: weights, where E may vary. We have already used M ( k )  to denote a k-fold con- 
voliition of ~nodulc weights. To say that w is drawn from that convolution we will write 
tu - M ( k ) .  For our purposes three bounds are quite important and are summarized by 
the following lemma. 

Lenmna 5 Let M (  k) denote a k-fold convolution of module weight random variables. T h e n  

(a) P r o b { h l ( k )  > % p m }  = O ( l / k ) .  

(b) P?*ob{h l (k )  < k/iL,/2} = O(l/k).  

(c) If A l l ( k )  and Af2(2k) are independent convoht ions ,  t h e n  Prob{Ml(k )  > M2(2k) }  = 
O(l/k).  

Proof (a )  aiid (b) a.re found in a manner entirely similar to the proof of Theorem 1. (c) 
is foiixicl in the sainr fashion by first noting that 

itiid that tlic random diffcrcnce has nican - k p m  and standard deviation on,(*. 
0 

An important component of our search strategy is to call the probe function with 
bottlcncck value 70 only if 20 exceeds V,-the greatest probe value known to fail, and if 
w is cloiniIi;ttc:d hy l<-the best known solution to (late. This test offers protection from 
scrializcd probo d c d a t i ~ I f i  when the probe value w touched by the search is small; with 
high probability w < V,. Let I, be the number of modules summed to form the value of 
1’1 iinmcdiatcly after the first rectangle search. Wc will say that the search is irregular 
if 1, < ~ t 1 / 4 ? i  or 1, is undefined, and otherwise is rrbgular. For the purposes of bounding 
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costs we will assume that any irregular search is completely serial, but then show that the 
probability of ail irregular search is s o  low that the expected cost due to irregular searches 
is O( ( m 2 / n 2 )  log m). We accoiiiplish this by showing that the probability of an irregular 
search is O(l/n2).  

Suppose that I, is defined, and equals k < m/4n. This implies that some w drawn 
from a convolution of k + 1 modules actually satisfies the probe. For simplicity we assume 
that w - M ( k  + l), although this is not rigorously true. The probability that a M ( k  + 1) 
random variable satisfies the probe is no greater than the probability that w - M(rn/4n)  
satisfies a new probe which passes automatically if w > mpm/2n, and which calls the 
original probe otherwise. The new probe is constructed only for the purpose of bounding 
prolmbilities. The probability of the new probe passing automatically is the probability 
that w > ~t/lm/2n; hut since w ,-+ M(m/4n), lemma 5(a) says this probability is 0(4n/rn). 
As 8n3 5 m, the probability of the new probe passing automatically is O(1/n2).  The new 
probe is also satisfied if w < m,4,,/2n, and the old probe passes w. A necessary condition 
for the old probe to pass w is that each of n processors receives a load less than or equal 
to 10. This implies that the sum of all module weights can be no greater than nw. Given 
that w < m&,,/2n, the sum of all module weights can be no greater than r n p m / 2 .  But by 
lemiria 5(b) the probability of this occurring is O(l/rn). Finally we consider the possibility 
that I j  is not dcfined. For this to occur the least weight on the first strip must pass 
the probe, a weight composed of a single module weight. The same types of arguments 
its i i sd  above will obviously establish that the chance of this occurrence is infinitisimal. 
Coiiscquently, the chance of an irregular search is O( 1/n2). 

Now we show that the expected complexity of a regular search is O((rn2/n)logrn). 
Siricc the scarch is rcgular we have 1, 2 rn/4n. Let w be a weight touched by the search. 
Two casc~s may occur. 

Case 1 Suppose that w is composed of k module weights, and k < rn/8n. For simplicity 
we assume that TU - M ( k ) .  A necessary condition for actually calling the probe 
function is that M ( k )  exceed the value v’, the value of Vj immediately after the first 
rcctniiglc evaluation. w is not independent of V j ,  but we will assume so for the sake 
of tractability. The probability of calling the probe function is then bounded by the 
probabili ty that a convolution Mi( rn/8n) exceeds another independent convolution 
hI2(m/4n) .  By lemma 5 the probability of this occuring is O(n/rn) = O(l/n2). If 
wc assume that an actual probe call must serialize because w is too small, then the 
expected cost due to this occurrence is only O((rn2/n2)  log m). 

Case 2 Suppose that w is composed of k module weights, and E 2 rn/8n. For the purposes 
of bounding costs, supposc that if in < i iLpm/i6?i illen ilie search serializes. By 
lcinrna. 5(b) the probability of this is O(n/rn)  = O ( l / n 2 ) .  and the expected cost 
of serialization in this fashion is O((rn2 /n2) logm) .  But if z u  >_ m/lm/16n, then 
w > n 2 p / 2  because we liave assumed 8n3 5 m. By thcorems 1 and 4 the probability 
of seriiilizat,i<jn is only O(I/n>. 
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Finally, we rriiist consider the behavior of the search during the first rectangle evalua- 
tioii. Whilc unlikcly, the worst casc: occurs if each of logm probes serializes. The cost of 
cdi ia t ing the first rectangle is then O ( m  log2 m). However, when m is sufficiently larger 
thii1i n (m2/:3 > logm) this cost is dominated by the parallel O ( ( m 2 / n )  logm) complexity. 

The discussions above have shown that when 8n3 5 m then the overall expected time 
cost due to serialization is O ( ( m 2 / n )  logm). The expected cost in the absence of serializa- 
tion was also 0 ( ( m 2 / n )  logm), making this expression the overall expected time complexity 
The space reqiiircd for the parallel probe is only O(m). 

6 Host-Satellite Problem 
Oiir  iiI)l)ro;~~h to  t h :  host-satellite problem is again modeled on Iqbal’s probing approach. 
For it given bottltrieck value w we apply a PROBE2-like function (from the linear array 
probleni) to cacli s;itellite chain. The bottleneck weights are all of the form Rij, where the 
SZ function is iclcmtical to that of the linear array problem. This probe will load the satellite 
with the fcasiblc load which minimizes the A function. The unassigned load is given to 
the host, and tho communication cost of breaking the chain is suffered by both the host 
and the satcllitc. The host’s cost is the sum of the n off-loaded subchains, the associated 
coxrirriunicat,ioii costs, plus some additional load H which it must always compute. Since 
(.ilch satellite miriiinizcd the load given to the host under the bottleneck contraint on 
siLt(.llite lo;~(Is, thc host’s load is minimized. The probe returns true if the host’s load is no 
grcaatcr than thc bottleneck weight. As before, we will first improve upon the known serial 
soliitions, and thcri show how to parallelize the mapping algorithm. We will reduce the 
wri;tl tinic complexity to O(m;tx{ nm log m, n log2 m}) ,  and find a parallel solution with 
O( mix{  nm, n log m max{n, logni}}) complexity. When m is sufficiently larger than n the 
nin tvrm will tloniiiiate; in this case the complexity is within a constant factor of optimal 
iiiitlcr the. a.ssuniptioxi that O( nm) time is required to load the problem onto host-satellite 
syst,c:m. 

6.1 An Improved Probing Approach 
Tlie set of bottlrwcck weights for the host-satellite problem has a different structure than 
that of the prcvioub two problems, but it is still exploitable. The bottleneck weights for 
a given chain are of the form Co + SI, + Cj = Rlj,  and consequently are not necessarily 
Inoxiotorie incroasing in j .  It is iinportant to remember that each chain has its own set of R 
valucs. To ;~llow the possibility of moving a satellite’s entire chain onto the host we define 
Slj0 = C,, whcrc: C;, is the communication cost of transmitting the satellite’s incoming 
tlittii  to tlic host. The assumption that communic;rtion costs are bounded allows us to 
sort a cl11~i11’~ hottlcneck values in O(m) time, using brute force. Define arrays right-less 
and ZcjX.qreuter, cach with m + 1 entries, and all entries initialized to zero. At the end 
of the algoritlini Zeft-.qreder(j) will contain the num1)er of bottleneck values $21, such that 
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i < j, and 521; > al,. Similarly, right-Zess(j) will contain the number of bottleneck 
valucs QZlk such that k > j ,  and Q1k < Rlj. f22;j’l.s rank (rank 0 meaning smallest) in 
t,hc sortcd list is consequently rtght-Zess(j) + j-Zeft-greater(j). The trick is to efficiently 
cornpute the auxiliary arrays. For every j = 0,. . . , m we scan increasing values of $ I l k ,  

k > j incrementing right-Zess(j) and Zeft-greater(k) every time we encounter a k such that 
Q l k  < Q , j .  The important point is that we may stop scanning as soon as k is so large 
that Cj < S j k ,  because we are assured that S t l k  for larger IC is always larger than a1j. 
Because thc communication costs are bounded, these scans require constant time. Given 
tlic: ranks, the items can be sorted in O(m) time. This gives the sorting algorithm an O ( m )  
complcxi ty. 

O(nrn) time is required to compute the auxiliary data structures for the probe function, 
and to sort each of n vectors of bottleneck values. The n sorted vectors can be merged into 
a single sorted list in O(nm logn) time. A binary search over the sorted list of bottleneck 
values with a probe call at each touch has O(n log’ m) complexity. As before, we must 
also consider the next smallest bottleneck weight & which passes the probe. ?, must lie 
djacent  to the bottleneck value found by the search and so is considered in constant 
time. Depending on the relationship between n and m, the overall complexity is either 
O( ?rm log n )  or O( n log’ m); in either case an improvement over Bokhari’s O( nm2 log m) 
solution, or our O(nm logm) improvement upon Bokhari’s solution. 

6.2 A Parallel Approach 
The sorting step dominates the complexity of our serial algorithm. If we treat the host 
like a shared mcmory, then the satellites could conceivably sort the bottleneck values in 
parallel. HOWCVC~, in all likelihood a real host-satellite system will not emulate a shared- 
mcmory machine particularly efficiently, so that we should practically consider another 
approach. 

An easy way to exploit parallelism is to perform the probe function in parallel. The 
natural way to do this is to have each satellite call a PROBE2-like function on its own 
siil>chain structure. To support such an  approach, each satellite is loaded with its own 
siilxliain costs. In parallel, each satellite sorts its own 0 values as previously described. 
Thc probe values will be selected by performing a binary search over each satellite’s list 
of hottlcneck weights; first we search the entire list of the first satellite, then the entire 
list, of the sccontl satellite, and so on. For every probe touch the host can query the 
itppropriate s;itc:llitc for the propcr probe value, and then transmit that value to every 
satdlitc. Each satellite then calls a PROBE2-like function to determine the feasible load 
wliich minimizes the remaining load (which is the host’s cost), and reports the remaining 
loit<l to thc host. The host computes its own load and determines whether the probe 
passed or failed. Loading the problem onto the satellites takes O(nm)  time. Each parallel 
prohc call takes O( max{ n,  log m } )  time; there are O(n  log m )  probe calls. The overall 
pnrallcl timc complexity is O(max{nm, n log rn max{n, log m } } ) .  When m is sufficiently 
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larger than n the O(nm) cost of loading the problem dominates. In this case the algorithm 
is within a constant factor of optimal, if we assume that the time to load the problem onto 
t,hc host-satellite system is proportional to the problem size. 

Problem 

7 Summary 

Improved Parallel Improved Iqbal 
Bokhari Serial Bok hari (Approximat  e )  

We have examined three parallel mapping problems: mapping a chain of modules onto a 
1irica.r array, a chain of modules onto a shared memory machine, and mapping a set of chains 
onto a host-satellite system. In each case we determine the mapping which minimizes the 
computation’s finishing time, subject to a contiguity constraint. These problems were 
originally shown to he tractable by Bokhari in [4]. Our work builds on his by first showing 
t,liat his solutions can immediately be improved by a factor of m (the number of modules), 
ant1 then by demonstrating that there are much more efficient solutions than those that 
dcrnonstrated the problems’ tractability. In addition, we showed how the target parallel 
architectures themselves can be used to compute the optimal mapping. In some cases we 
showed that algorithms with bad worst case complexity have good average case complexity. 
The table below compares the time complexities of Bokhari’s original algorithms, our 
ixnprovcmcnt on tliose algoritlixns, Iqbal’s approximation methods, our serial and parallel 
iinprovctl incthotls. In some cases we have simplified complexities by assuming that m is 
niiicli larger than 11. 

nm2 nm log m m log m log n 

m2 logm ( m2/n) log m 
(expected, 
amortized 1 

S limed 
Mcmory m2 (amort ized)  nm3 log m nm2 log m 

AcX:~~o,ri)ledge~nent.~ This research would not have been done if Dave O’Hallaron hadn’t 
iiisis t c d  tlia t, tlic laycrcd graph approach could be expressed in dynamic programming 
c*(l1ii \  tioris. This insistence ultimately led to the imlrovemcmts ill the laycred graph algo- 
ritlixiis, ant1 t h  scnrch for better methods. David Middleton actc.d admirably as a tailor’s 
(liitiiiny, arid Sliahitl Bokhari civilly encouraged this work. 
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